Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 120(9): 090501, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29547319

RESUMO

We present a continuous variable tomography scheme that reconstructs the Husimi Q function (Wigner function) by Lagrange interpolation, using measurements of the Q function (Wigner function) at the Padua points, conjectured to be optimal sampling points for two dimensional reconstruction. Our approach drastically reduces the number of measurements required compared to using equidistant points on a regular grid, although reanalysis of such experiments is possible. The reconstruction algorithm produces a reconstructed function with exponentially decreasing error and quasilinear runtime in the number of Padua points. Moreover, using the interpolating polynomial of the Q function, we present a technique to directly estimate the density matrix elements of the continuous variable state, with only a linear propagation of input measurement error. Furthermore, we derive a state-independent analytical bound on this error, such that our estimate of the density matrix is accompanied by a measure of its uncertainty.

2.
Phys Rev Lett ; 110(9): 090502, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23496697

RESUMO

We study the robustness of quantum information stored in the degenerate ground space of a local, frustration-free Hamiltonian with commuting terms on a 2D spin lattice. On one hand, a macroscopic energy barrier separating the distinct ground states under local transformations would protect the information from thermal fluctuations. On the other hand, local topological order would shield the ground space from static perturbations. Here we demonstrate that local topological order implies a constant energy barrier, thus inhibiting thermal stability.

3.
Phys Rev Lett ; 107(21): 210404, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22181862

RESUMO

Quantum tomography is the main method used to assess the quality of quantum information processing devices. However, the amount of resources needed for quantum tomography is exponential in the device size. Part of the problem is that tomography generates much more information than is usually sought. Taking a more targeted approach, we develop schemes that enable (i) estimating the fidelity of an experiment to a theoretical ideal description, (ii) learning which description within a reduced subset best matches the experimental data. Both these approaches yield a significant reduction in resources compared to tomography. In particular, we demonstrate that fidelity can be estimated from a number of simple experiments that is independent of the system size, removing an important roadblock for the experimental study of larger quantum information processing units.

4.
Nat Commun ; 1: 149, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21266999

RESUMO

Quantum state tomography--deducing quantum states from measured data--is the gold standard for verification and benchmarking of quantum devices. It has been realized in systems with few components, but for larger systems it becomes unfeasible because the number of measurements and the amount of computation required to process them grows exponentially in the system size. Here, we present two tomography schemes that scale much more favourably than direct tomography with system size. One of them requires unitary operations on a constant number of subsystems, whereas the other requires only local measurements together with more elaborate post-processing. Both rely only on a linear number of experimental operations and post-processing that is polynomial in the system size. These schemes can be applied to a wide range of quantum states, in particular those that are well approximated by matrix product states. The accuracy of the reconstructed states can be rigorously certified without any a priori assumptions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...